

Differences between Solubility & Dissolution

Solubility	Dissolution
Intrinsic dynamic properties	Extrinsic Kinetic properties
Depends on:	Depends on:
Chemical and physical properties of the solute & solvent	Chemical and physical properties of external phase
рН	Complexation
Temperature	P.S. & S.A.
Pressure	Solubilizing agent

Solubility Expression

Description forms (solubility definition)	Parts of solvent required for one part of solute	Solubility range (mg/ml)	Solubility assigned (mg/ml) 1000	
Very soluble (VS)	<1	>1000		
Freely soluble (FS)	From 1 to 10	100-1000	100	
Soluble	From 10 to 30	33-100	33	
Sparingly soluble (SPS)	From 30 to 100	10-33	10	
Slightly soluble (SS)	From 100 to 1000	1-10	1	
Very slightly soluble (VSS)	From 1000 to 10,000	0.1-1	0.1	
Practically insoluble (PI)	>10,000	<0.1	0.01	

Mechanism of solubility

Molecules of the solid breaks away from the bulk

The freed solid molecule is integrated into the hole in the solvent

- >Accordingly, there will be endothermic and exothermic process of solubilization. o
- ➤ The solubility of carbonated water is

Solvent-Solute Interactions

Like dissolves Like

- Water for salts and sugars
- > Mineral oils for substances that are slightly soluble in water

		lvent	Solvents	Solut	
Solute	Polar	Nonpolar	Water (polar)		
Ionic	Soluble	Insoluble	CH ₂ Cl ₂ (nonpolar)	Ni(NC)	
Polar	Soluble	Insoluble	(a) (b)	(c)	
Nonpolar	Insoluble	Soluble	/	npolar) 4	

Polar solvents

Water can dissolve solutes by different mechanisms

- Dipolar interaction (eg: Water dissolves ionic solutes)
- > H-bonding (eg: Water dissolves Alcohols, phenols, aldehydes, ketones and amines.
- What are the effect of R group on water miscibility?

$$\begin{array}{ccc}
 & H & H \\
 & \downarrow & \downarrow & \downarrow \\
 & \bullet & \bullet & \bullet & \bullet \\
 & & Alcohol
\end{array}$$

$$\begin{array}{c|c}
H & H \\
\hline
R - C = O \cdot \cdot \cdot \cdot H - O \cdot \cdot \cdot \cdot
\end{array}$$
Aldehyde

$$H_3C$$
 $C=O\cdots H-O\cdots$

Ketone

$$R_3$$
 $N \cdot \cdot \cdot \cdot H - O \cdot \cdot \cdot \cdot$